All Posts

OxyMem, Boldly Going Where No Sewage Treatment Has Gone Before!

OxyMem, Boldly Going Where No Sewage Treatment Has Gone Before!

NASA is hard at work tackling the challenges of space travel and dreaming up technologies to meet those challenges.

Researchers are examining wastewater recovery systems robust enough for use on long term space missions. Biological treatment has been the primary focus, with specific thrusts in developing a biological treatment system that may be operated with minimal crew maintenance and low energy and mass requirements.

In space travel, water is crucial. As space agencies around the world are contemplating human missions to Mars and even further afield, water must be recovered aboard the spaceship.


Currently, water in space-stations is produced by the condensation of humidity and by the treatment of urine excreted by astronauts. This waste is recycled using a combination of membrane filtration and distillation processes however on long voyages, such as those to Mars, there will be no ability to supply replacement filters from earth or to dispose of concentrated waste streams.

Biological wastewater treatment degrades pollutants, produces less waste and at the same time uses less energy and no chemicals. This makes it a serious contender for a role in the recovery of water aboard long duration space missions.

Microgravity conditions in space mean that bubbles don’t work, so an alternative method of supplying oxygen for the biological treatment is required. The Membrane Aerated Biofilm Reactor supplies Oxygen through concentration gradient across the gas permeable membrane without the requirement for gravity, therefore allowing for the aerobic biological degradation of the waste.

Additionally because the process is biofilm based it is more stable and resilient than suspended biological treatment processes, which is crucial when the nearest help is 200,000,000 km away. 

In a recent study by researchers at Texas Tech University it was concluded that the ability of an MABR using microporous membranes to perform as a treatment system was a “promising technology for use in space applications”.

With that in mind, could OxyMem - the first commercially available MABR on earth, one day make it into space? Only time will tell.

Eoin Syron
Eoin Syron
Dr. Eoin Syron is OxyMem's technical leader and innovator. Eoin has been involved in the development of OxyMem since its earliest days, focusing on scale up issues and investigating full-scale deployment of the technology.

Subscribe to stay informed

*Environment  *Legislation  *Socio-economics  *Technology

Related Posts

Anglian Water (UK) Triple Carbon Reduction Project

Triple Carbon Reduction, Anglian Water, UK Supported by UK Water Services Regulation Authority, Ofwat We are proud to join Anglian Water Services and an extensive team of partnering companies and academia on the current Triple Carbon Reduction initiative, part of Ofwat's Water Breakthrough Challenge. OxyMem™The Triple Carbon Reduction project is an initiative that will demonstrate how MABR can help the sector minimise process emissions and energy consumption typically associated with municipal biological wastewater treatment. The Triple Carbon Reduction project aims to showcase an integrated solution addressing three potential carbon benefits, aligned with the objectives of the whole water industry to achieve Net Zero by 2030: Demonstrate a viable alternative wastewater treatment process (MABR - Membrane Aerated Biofilm Reactor) targeting elimination of nitrous oxide (N2O) emissions from secondary treatment; Achieve up to 85% reduction in energy consumption compared to conventional treatment processes currently in use (i.e. “activated sludge”); Generate oxygen via electrolysis, to be utilised in the MABR process, and green hydrogen for use in applications that are currently challenging to decarbonise (i.e. diesel generators).

OxyMem MABR Enhanced ammonia removal

Enhanced WWTP nitrification with OxyMem™ MABR Faster, stronger, harder… OxyMem™ MABR (Membrane Aerated Biofilm Reactor) is a unique biofilm system that can be used to intensify existing wastewater treatment facilities. A microbial film is established on millions of tiny gas-permeable membranes. This biofilm breaks down wastewater pollutants effectively with highly efficient oxygen transfer. Ammonia removal can be enhanced with every additional OxyMem™ unit added.

How to cut emissions from wastewater?

How to cut emissions from wastewater? On the 21st of September we not only celebrate Zero Emissions Day, but also we are asked to curb our emissions for 24 hours whenever it's possible.